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Fig. 1. Examples of experimental displays. Participants were asked to find a target (purple square) in visualizations with varying mark
sizes, set sizes, and color configurations. Figures not drawn to scale.

Abstract— In this paper we make the following contributions: (1) we describe how the grouping, quantity, and size of visual marks
affects search time based on the results from two experiments; (2) we report how search performance relates to self-reported difficulty
in finding the target for different display types; and (3) we present design guidelines based on our findings to facilitate the design of
effective visualizations. Both Experiment 1 and 2 asked participants to search for a unique target in colored visualizations to test
how the grouping, quantity, and size of marks affects user performance. In Experiment 1, the target square was embedded in a grid
of squares and in Experiment 2 the target was a point in a scatterplot. Search performance was faster when colors were spatially
grouped than when they were randomly arranged. The quantity of marks had little effect on search time for grouped displays (“pop-
out”), but increasing the quantity of marks slowed reaction time for random displays. Regardless of color layout (grouped vs. random),
response times were slowest for the smallest mark size and decreased as mark size increased to a point, after which response times
plateaued. In addition to these two experiments we also include potential application areas, as well as results from a small case study
where we report preliminary findings that size may affect how users infer how visualizations should be used. We conclude with a list
of design guidelines that focus on how to best create visualizations based on grouping, quantity, and size of visual marks.

Index Terms—information visualization, graphical perception, size, layout

<+

1 INTRODUCTION

A common goal when creating visualizations is to improve user perfor-
mance by optimizing visual design given the limitations of the visual
system. A central issue in designing effective visualizations concerns
how to present as much information as possible while maintaining leg-
ibility. Here we report the results of two experiments that test how the
ability to find a target data point is influenced by the size of the marks
encoding data, the quantity of these marks, and the color grouping in
the visualization. We tested user performance when the data were pre-
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sented as squares in a grid (Experiment 1) and as marks in a scatterplot
(Experiment 2). Based on the results, we provide guidelines on how
to optimize data density while maintaining usability.

This paper is part of a broader effort to quantify how visual encod-
ing (how data is represented in visual features) can improve or detract
from user performance [2, 5, 18, 24, 25, 33, 44, 46, 51]. Previous
studies have looked at topics as diverse as adjusting chart height to
improve slope comparison [43] and adjusting aspect ratios of treemap
components to facilitate area comparison [30]. By understanding the
effect of specific visual encodings on user performance, researchers
can help programmers improve default design options in visualization
software. This approach can also help designers make more effective,
informed decisions.

Professional designers are able to produce simple, elegant visual-
izations based on their intuitions on how features like size, color, and
mark density effectively encode data. Now more than ever, novices
who lack these intuitions can easily generate complex visualizations
with a few lines of code or button presses. This ease of use is problem-
atic if novices rely on the default parameters provided by visualization
software, which can lead to hard-to-read or misleading visualizations
(e.g., rainbow color maps [3]). Novices can further obfuscate their data



when customizing visualizations by manipulating the myriad param-
eters available without understanding how those settings affect user
performance. Seemingly small decisions (e.g., the selection of a color
gradient) can profoundly impact legibility [38].

A central goal of this paper is to understand how to improve visual-
ization tools that are used for rapid serial viewing, in which search
speed is especially important. For example, cancer genomics re-
searchers and medical professionals who have started to use personal-
ized genomics may search through charts showing where various mu-
tations fall on transcripts as quickly as possible when forming research
hypotheses. Improving target detection speed may help these re-
searchers and medical professionals spend less time weeding through
data and more time on advancing our understanding of cancer and on
finding the best methods for patient care.

In this paper, we make the following primary contributions:

e We describe how the grouping, quantity, and size of visual marks
affects search time based on the results from two experiments

e We report how search performance relates to self-reported diffi-
culty in finding the target for different display types

e We present design guidelines based on our findings to facilitate
the design of effective visualizations

In addition, we report the results of a multiple linear regression
model constructed from stimulus parameters, which explains 89% of
the variance in response times from searching though grids (Exper-
iment 1). This model generalizes to response times from searching
through scatterplots in Experiment 2 (86% of the variance explained).
We also provide several potential application areas for our research
and results from a small case study where we found mark size may in-
fluence what type of analysis task (e.g., global pattern or target search)
is associated with a visualization.

2 RELATED WORK

The experiments described in this paper contribute to the study of
graphical perception—how visualization usability is affected by visual
attributes like grouping by color similarity, shape, and size [9]. This
section surveys the prior literature on graphical perception that forms
the basis for our research on size and grouping.

According to Eick and Karr, seven categories of scalability issues
arise in data visualization: human perception, monitor resolution, vi-
sual metaphors, interactivity, data structures and algorithms, and com-
putational infrastructure [11]. Our work lies in their human percep-
tion and monitor resolution categories. Within the category of size
perception, we define three subcategories: 1) scale, the physical size
of elements (i.e., zoom level); 2) quantity, the number of elements;
and 3) aspect ratio, scaling one dimension to shrink or expand ele-
ments. Each of these subcategories pertains both to individual marks
and whole visualizations.

The size of marks in visualizations has substantial effects on perfor-
mance [42]. Studies of how visual scale (i.e., zooming) influences user
performance often focus on tasks involving navigational maps. Work
in this area dates back to cartographic research, predating information
visualization. For instance, Enoch found that visual search perfor-
mance had steeper performance declines based on visual angle when
map size was 9° or less, compared to a shallower performance differ-
ence when map size was greater than 9° [12]. More recently, Jakobsen
and Hornbak compared user navigation performance when maps were
displayed on monitors of varying sizes, causing the maps’ visual an-
gle to vary across displays [39]. Participants were asked to complete
map-based navigation tasks across various zoom levels. Performance
was similar for users with medium-sized and large monitors, but was
better for those with larger monitors than with small monitors. This
was true even after controlling the quantity of information displayed
[28]. They report dissimilar findings from Yost and North, who varied
the number of elements relative to the monitor size and found no effect
on normalized performance time [51]. Jakobsen and Hornbak suggest
that the difference might be due to variance in task difficulty.

A large body of literature in the psychology of attention reports how
the quantity of elements in visual displays influences people’s ability
to find targets. Treisman and Gelade found that the quantity of dis-
tractor elements had differential effects on search time, depending on
the relation between the visual features of the targets and distractors
[48]. If a target (e.g., blue circle) differs from a homogeneous set of
distractor elements (e.g., red circles) on a single feature (e.g., color),
the number of elements has little to no effect on search performance.
Visual search under such conditions is considered to be preattentive,
where all the elements are surveyed in parallel and the target “pops
out” (i.e., parallel visual search). If the target differs from a hetero-
geneous distractor set on multiple features (e.g., a blue circle target
among red circle and blue square distractors), visual search is serial —
people must exhaustively search all elements until they find a target.
Parallel search is marked by reaction time functions that have little to
no slope as distractor set increases, whereas serial search is marked
by reaction times that follow robust positive slopes over set size. This
distinction is useful in evaluating users ability to “automatically” find
target information in visualizations, given the display parameters.

Further, visual search is more difficult when: 1) distractors more
closely resemble possible targets and 2) distractors have higher vari-
ability in visual appearance [10]. This difficulty due to increased dis-
tractor variability is consistent with the claim that decreased coherence
or order in a visualization impairs performance [20, 31]. Additional
evidence from studies using node-link diagrams and adjacency matri-
ces also indicate that response time increases as the set size and data
density increases [14]. Our study builds on these results by: 1) look-
ing at a greater range and total number of set sizes, and 2) investigating
how set size could interact with grouping by color similarity [49] and
the size of marks.

Relating to this work, Haroz and Whitney provide visualization de-
sign guidelines based on how color variability (i.e., the number of col-
ors) and grouping affected the ability to find a target in a grid of col-
ored squares [18]. They found that participants were faster at finding
targets in displays where marks were grouped by color rather than ran-
domly distributed. Adding additional color variability to displays had
little affect for grouped displays. However, the affect of adding color
variability for random displays depended on whether the target type
was known before the start of each trial. If the target was unknown
(“odd ball” task), performance slowed substantially as color variabil-
ity increased, whereas the performance decay was minor if the target
was known. Unlike Haroz and Whitney who focus on color variety and
grouping, we investigated how effects of grouped vs. random layouts
influence performance as the size and quantity of marks increased. We
predicted that the minor difference in search time for grouped and ran-
dom layouts found by Haroz and Whitney for grids of 64 elements
would increase dramatically as the number of elements increased.

Wolfe provides a survey on many other important visual search con-
siderations when detailing his “Guided Search 2.0” model [50]. Per-
haps most relevant to this work, Wolfe discusses how the density of
marks influences search performance. For instance, greater density
facilitates search performance when the target type is unknown, but
has little effect when the target type is known [6]. Related to density,
Palmer notes that set size can have a varying effect on performance
due to numerous other related factors such as eccentricity [36]. Our
first experiment varies total display size with mark size as spacing be-
tween marks was kept fixed across all conditions, however we have
provided a view of our results that highlights the relation between to-
tal display size and response time (Figure 4). Our second experiment
has a fixed display size for all trials. The present study adds to our
knowledge of how search factors such as set size can affect task per-
formance; however, as Wolfe and Palmer have shown, there are many
remaining factors that information visualization researchers can use to
study performance.

Further research has examined how constraints in the visual system
affect how observers interpret scatterplots. Gleicher et al. show that
users can effectively compare average values in multiclass scatterplots
even with dissimilar number of points between classes, additional dis-
tractor classes, and with conflicting cues [15]. Fink et al. take a



Fig. 2. Three example grids that were presented in Experiment 1. The
left shows the single-colored layout, the middle shows the group-colored
layout, and the right shows the random-colored layout.

complementary approach to improving scatterplot efficacy [13]. They
found that their method for selecting scatterplot aspect ratio, based on
Delaunay triangulation, improved the accuracy of correlation and clus-
ter detection within scatterplots. Where Gleicher et al. examined value
comparison in scatterplots and Fink et al. examined aspect ratios, our
study examines how the number and size of marks influences visual
search performance.

Studies have also revealed that the aspect ratio of graphical ele-
ments affects user performance. Looking at individual rectangles,
Heer and Bostock found that people were more accurate at compar-
ing the area of two rectangles when they departed from a 1:1 aspect
ratio [24], although Kong et al. found that performance was also poor
for extreme aspect ratios [30]. Looking at whole graphs, Talbot et al.
found that the aspect ratio of line charts influenced people’s ability to
compare slopes of lines [43]. Participants had more difficulty compar-
ing two large slopes than two shallow slopes; however, reducing chart
height to reduce the physical angle of the two lines improved accuracy.
In contrast, Heer et al. found that people are better at comparing val-
ues in horizon graphs — a type of time series visualization — with taller
graphs rather than shorter ones [25]. Heer and Bostock found similar
results when looking at bar chart height, and further found that benefits
of increasing height plateaued with successively greater height incre-
ments [24]. Taken together, these studies suggest that when the goal is
to compare angles, visualizations should be shorter, and when the goal
is to compare area, visualizations should be taller.

An often challenging part of graphical perception research is de-
signing experiments that capture the complexity of real-world infor-
mation visualizations. In an effort to improve the ability to capture
and account for such complexity in full, Rosenholtz et al. show how
they were able to use computational approaches to assess grouping in
design and demonstrate how their computational results relate to tradi-
tional design rules [41]. We believe work such as this can provide the
foundation for creating computational techniques that give designers
indicators when it would be useful to apply certain guidelines discov-
ered from graphical perception research.

3 EXPERIMENT 1: SEARCHING THROUGH GRIDS

In this experiment, we studied how visual mark size, the number of vi-
sual marks (set size), and the color layout (grouping) influence the time
taken to find a known target in a grid of squares. In the experiment,
participants were presented with colored grids (Figure 2) and were
asked to indicate which quadrant contained the purple target. This
task is similar to Haroz and Whitney’s “Find a Known Target” task,
except they varied the target color across trials and their participants
indicated whether a known target was present/absent (without report-
ing its location) [18]. We fixed the target color and used the quadrant
localization task because the types of everyday search tasks we are
interested in optimizing involve localizing a single target type. For in-
stance, cancer genomics researchers routinely try to localize specific
mutations in many types of visualizations such as transcript charts and
various distribution plots.

We note that although the use of response time as a dependent mea-
sure in visualization research is controversial [27], it is an appropriate
measure for our present objectives. We are most concerned with un-

derstanding and optimizing tasks where users need to look through
many series of visualizations and find a target as quickly as possible.
We acknowledge that other measures (e.g., long-term memory) are
important in improving our knowledge of visualization usability, and
that the goal of a given study is paramount in choosing a dependent
measure.

We hypothesized the following:

H1 Participants take longer to find targets in random-colored grids
than in grouped- and single-colored grids

H2 Set size and mark size influence responses to random-colored
grids to a larger degree than to grouped- and single-colored grids

H3 Responses are slowest when grids have large quantities of visual
marks of very small or very large mark sizes (e.g., a 14x 14, 50
px condition)

We derive H1 and H2 from our prediction that visual search re-
sponse time trends, due to pop-out, will be uniform and parallel for sin-
gle and grouped colored grids independent of changes to visual mark
size and set size. Related, we believe that random grids — which we
predict do not afford pop-out effects — will be influenced by changes
in visual mark size and set size. We derive H3 from our belief that
processing many small marks requires effort to differentiate and parse
and that processing many large marks requires effort from gaze shift-
ing during search.

3.1 Methods
3.1.1 Participants

There were 15 participants (mean age 24.2 years, range 19-30 years)
recruited from on-campus fliers and university mailing lists. All had
normal color vision (assessed with H.R.R. Pseudoisochromatic Plates
[17]). All gave informed consent and were compensated for their par-
ticipation. The Brown University Institutional Review Board approved
the experiment protocol.

3.1.2 Design and Displays

Experiment 1 included two size factors: visual mark size (length of
one edge of the square marks) and mark set size (the total number of
visual marks). The levels for mark sizes and set size were:

Mark size: {.254° (10px), .508° (20px), .762° (30px), 1.016°
(40px), 1.271° (50px)}

Set size: {6x6,8x8,10x 10,12 x 12,14 x 14}

Mark size is given in terms of visual angle, where 1° is roughly
equivalent to 1.064cm. We limited the maximum set size to 14 x 14
due to the resolution constraints of the testing environment’s moni-
tor while trying to maintain a diversity of set size and mark size con-
ditions. We also tested three color layout variations (Figure 2): 1)
single-color, 2) 4-color grouped, and 3) 4-color random layouts. In
the single-color layout (Figure 1, left), the distractor marks were all
the same color (see below for color details). In the 4-color grouped
layout, the distractor marks were spatially grouped by color into four
quadrants (Figure 1, center). In the 4-color random layout (Figure 1,
right), the distractor marks were randomly colored (equal numbers of
each color except one color in which one square became the target).
The three color layouts crossed with the 25 combinations of set size
and mark size created the 75 main conditions. Henceforth, the 4-color
grouped condition is referred to as “grouped” and the 4-color random
condition is referred to as “random.”

Within each color layout there were four variants. In the single-
color layout condition the variants were four distractor colors (red,
yellow, green or blue). In the grouped layout the variants were four
different permutations of color group placement (e.g., in one condi-
tion red was in the top-left quadrant but in another it was in the top-
right). In the random layout the variants were for random assignment
of color positions. These variants were treated as replications because



they were not central to the aims of this study. We had an equal num-
ber of colored squares in the grouped and random conditions (e.g.,
10x 10 grids had 25 squares of each color). This constraint guaran-
teed that each quadrant in the grouped condition corresponded to a
unique color. We placed the same constraint on the random condition
for comparability.

Each display type described above was presented four times so the
target would appear an equal number of times in each quadrant for
each display type. The four target locations were treated as replica-
tions.

The full experiment design included 1200 displays (5 mark sizes x
5 set sizes x 3 color layouts x 4 color variants x 4 target locations).
There was one replication of the full design (total of 2400 trials) to en-
sure that there were enough data to analyze participant reaction times.
When averaging all replications, there were 32 trials for each of the 75
main conditions for each participant.

3.1.3 Girid creation

The grids were generated individually for each participant using
a Python script to create grid data, which were rendered with a
D3/Node.js script [4, 45]. The rendered squares were always sepa-
rated by a .127° (5px) gap, regardless of the other size conditions.
The target location within each quadrant was randomly assigned for
each trial. However, we added a constraint that targets could not exist
on any of the four edges of the quadrant because targets falling on a
border elicit different results from those one or more marks away [47].

3.1.4 Color selection

Many researchers have shown how color selection is an important con-
sideration when designing visualizations. For instance, Healey et al.
found that encoding search targets with a differing hue can lead to
more accurate responsnes [23]. Because of the relation between per-
formance and color selection, many have suggested color selection
techniques to improve the usability of visualizations [20, 26, 33, 35].
Healey suggests a method to pick colors using the Munsell color model
[22], which closely resembles our color selection process. The colors
we selected were: red, yellow, green (Healey used green-yellow in his
method), blue, and purple. We arrived at our similar colors indepen-
dently. We achieved this by choosing a purple that had the most inter-
mediate luminance, chroma, and hue arc values of the chosen palette.

In Experiment 1, the target color was always purple and the distrac-
tors were blue, green, yellow, and red (see Table 1 for CIE xyY and
LCH coordinates). The reason for using only one target color was de-
scribed above (Section 3), and the choice to make the target hue purple
was arbitrary. All of the colors were nameable and categorically dif-
ferent. The colors were all assigned different luminance values, given
that incorporating luminance contrast between elements facilitates leg-
ibility [42].

The purple target was set to have a mid-level luminance (30 cd/m?2)
with respect to the distractor colors. The Michelson contrasts between
the purple target and the blue and red distractors was +/-16.5%, and
the contrast between the purple targets and the yellow and green dis-
tractors was +/- 33% (see Table 1 for luminance values). The purple
had a mid-level chroma, situated halfway between the higher chroma
red and yellow and the lower chroma blue and green (see Table 1).

The CIE L*u*v* coordinates were translated into CIE 1931 xyY
space using an Illuminant D65 white point (x = .3127, y = .3290,
Y = 100). These device-independent coordinates were translated to
monitor-specific RGB values so they could be accurately rendered on
our calibrated monitor.

Each grid was displayed on a black background. Dark gray lines
delineated the borders between the four quadrants (CIE x=.3021,
y=23121, Y=12.43).

3.1.5 Procedure

The monitor was warmed up for 30 minutes before each test session
to prevent color shifting during the experiment. Participants first gave
consent, completed the H.R.R. Pseudoisochromatic Plates [17] color

Color | x y Y | Lightness Chroma Hue
Yellow | 4393 4769 60.0 | 81.838 95 75
Red 4335 2982 42.0 | 70.871 95 5
Purple | 2899 .1933 30.0 | 61.654 83 295
Blue 1768 2373 21.5 | 53.492 71 225
Green 1903 4681  15.0 | 45.634 71 155

Table 1. Colors used in the study expressed in xyY color space and
each color’s corresponding lightness, hue angle, and chroma (LCH)

vision test, and filled out demographic information. The lights were
then turned off in the testing booth. The participants were told that
they would be presented with a series of grids, each containing a pur-
ple target, and their task was to indicate which quadrant contained the
target (i.e., top-left, top-right, bottom-left, bottom-right). To respond
they used four labeled keys on the keyboard numpad (one for each
quadrant). The experimenter remained in the room while participants
completed 10 practice trials to answer questions, after which the exper-
imenter left the room. During the experiment participants were shown
each of the 2400 grids one at a time in a random order. Each grid re-
mained on the screen until participants made their response. Each trial
was separated by a 500ms intertrial interval during which the screen
was black except for a fixation cross of the same color as quadrant grid
lines. Short breaks were given after every set of 15 displays and long
breaks were given 25%, 50%, and 75% of the way through the study.
Participants were seated approximately 60 cm away from the screen
and were asked to reduce any movement towards or away from the
screen; this was reinforced throughout the practice trials.

3.1.6 Equipment

We used an ASUS ProArt Series PA246Q Black 24.1” monitor (1920
x 1200 pixel resolution). The monitor was characterized with a Kon-
ica Minolta CS-200 Luminance and Color Meter. The experiment was
conducted through a locally hosted instance of Experimentr [19].

3.2 Results and Discussion

Before analyzing results we filtered the data using standard proce-
dures for reaction-time datasets [37]. We first removed all trials where
participants made incorrect responses because we were interested in
participants’ reaction times when they were successful in finding the
target. The mean accuracy across participants was 92% (range: 90%-
93%). Upon inspection, the errors appeared evenly divided across con-
ditions, but there were too few errors for systematic statistical analysis.

We next removed outlier trials for each participant, defined as re-
sponse times more than two standard deviations away from the mean
of all trials for that participant. The mean number of outlier trials
across participants was 89 trials (range 32-103 trials). Given that par-
ticipants completed 32 trials for each critical condition, ample data
remained after outliers and incorrect responses were removed. Across
all subjects and conditions 28 out of 34 trials were considered on av-
erage (range: 9-32).

3.2.1

Figure 3 (left) shows the effect of set size on response time for each
color layout condition, averaged over mark size. For each color lay-
out condition, we tested whether set size influenced performance by
first calculating the best-fit line for each subject and then using ¢-
tests to compare the mean slope of the best fit lines with zero. There
was a robust effect of set size for the random color condition (¢(14)
=7.17, p < .001): participants took longer to find the target as the
set size increased. The positive slope indicates that participants used
serial search until they found the target. In contrast, the slope for
the grouped- and single-color conditions did not differ from zero
(#(14) = 1.49,1.76, ps > .05, respectively), indicating that participants
used parallel search and the target “popped out,” regardless of the num-
ber of distractors.

Interaction between mark-set size and color layout
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Fig. 3. Averaged response times (RT) for all color layouts for each set
size. Bars show standard error.

We next compared the random and grouped conditions to look at
effects of grouping and set size when the number of distractor colors
was held constant at four. There was a robust effect of color layout:
response times were significantly faster in the grouped than in the ran-
dom condition (F(1,14) = 403.96,p < .001). The magnitude of this
difference varied with set size, as indicated by a layout x set size inter-
action (F(4,56) = 98.75,p < .001). The extent to which the random
layout slowed performance increased as the number of elements in-
creased. Recall Haroz and Whitney’s report that grouping had a minor
effect in their known-target condition (difference of roughly 100 ms)
for their displays of 64 elements. We found a comparable difference
for our displays containing 64 elements (91.2ms averaged over mark
size), but the difference increased to 180.4ms for our largest set size of
196 elements. Thus, color layout has a larger impact on displays with
more data, complementing Haroz and Whitney’s finding that layout
has a larger impact on displays with higher color variety.

This difference between the random and grouped conditions can be
understood by considering how the “number of distractors” is defined
by the visual system. In the grouped condition, the same-colored el-
ements are grouped by color similarity and by common region (due
to grid lines), causing them to form four global “objects.” In this in-
terpretation, the small squares can be considered texture elements that
comprise the four global objects [29]. Adding more texture elements
(which we have been describing as increasing set size) does not change
the perceived number of distractors, which is still four — one for each
color group. If the number of global objects remains constant, previ-
ous work on texture predicts little to no increase in response time with
the addition of more elements. Consistent with this interpretation, the
average response time in the single-color layout condition was faster
than in the 4-color grouped condition (F(1,14) = 6.09, p < .05).

3.2.2 Effects of mark size and its interaction with set size

Figures 4A,D, and G show the data from Figure 3 separated by mark
size, with an individual chart for each color layout condition. We see
two main patterns in these data. The first is that the lines within each
color layout condition are roughly parallel, indicating that the effect of
set size is similar for the different mark sizes. We tested this observa-
tion by first calculating the best-fit line of each participants response
time as a function of set size for each square length in each color layout
condition (the 15 lines in Figure 4A,D,G). We then conducted a one-
way repeated-measures ANOVA for the five slopes within each color-
layout condition. The slopes for the different mark sizes did not differ
significantly within the single, grouped, or random color layout condi-
tions (F(4,56) =2.10,1.64,.74, ps > .05, respectively). This analysis
suggests that the effects of mark size are independent of the effects of
set size within each color-layout condition.

The second pattern is that response times for the smallest mark
size were the greatest for all color layout conditions, and that the
effect of mark size on response time plateaus as mark size in-

creases. This pattern is clearer in Figure 4B,E,H where the rate of
decline between adjacent mark sizes decreases as mark size increases.
For all color layouts we see the sharpest decline in response time
between .254° and .508° mark sizes, with subsequent slopes be-
tween other neighboring mark sizes about half or less. This obser-
vation is supported by robust linear and quadratic contrasts in the
mark size factor for all three color layout conditions: random-linear
F(1,14) = 76.87,p < .001; random-quadratic F(1,14) = 56.10,p <
.001); grouped-linear F(1,14) = 11.54, p < .001; grouped quadratic
F(1,14) = 83.71,p < .001; single-linear F(1,14) = 95.21,p < .001;
single-quadratic F(1,14) = 86.06,p < .001. The finding that perfor-
mance is worst when marks are small and that performance improve-
ment plateaus as mark size increases is consistent with prior results.
Heer and Bostock found that comparing bar-chart values had similar
plateauing advantages when increasing chart height [24], and Jakob-
sen et al. found similar plateaus when increasing physical displays for
map navigation tasks [39, 28]. These findings only partially fulfill H3,
as .254° lengths do have the highest response time; however, 1.271°
mark sizes have roughly the same response time as 1.016° mark sizes
for all conditions. It is possible that H3 may still be supported by
examining larger set sizes.

We also plotted response time as a function of total grid length to
examine the impact of adding more data points given a fixed frame
(Figures 4C,E]I). If a designer is working with a small amount of
screen real estate and with ungrouped data, our results show that while
you can fit 196, .254° elements in a slightly greater space as 36, .508 °
elements, doing so instills a large penalty to performance.

The difference in search type (parallel vs. serial) shows that in-
creasing set size is a barrier to efficiency in noisily colored visual-
izations but a negligible influence in ordered or simply colored visu-
alizations. There is also a significant interaction between mark size
and color layout (F(8,112) = 17.773,p < .001), where participants
perform significantly worse in the random condition. These two re-
sults taken together support H2, as increasing set size and mark size
will slow response time for randomly colored grids at a faster rate in
comparison to grouped and single colored grids. As seen in Figure 4,
random layouts as a whole elicit slower response times in comparison
to grouped and single colored grids thus supporting H1.

It is possible that the response time trend in our results could be in
part due to interactions that Stone notes between color discriminability
and size [42], however further testing is required to determine such an
interaction. The results of this experiment indicate that if data can be
grouped (e.g., by color) then search performance is not affected by the
quantity of data marks. However, it is not always possible to group
data, such as in scatterplots where ordering cannot be altered. We will
will investigate the effects of mark and set size in less ordered displays
in Experiment 2.

3.2.3 Predicting Search Time: Experiment 1

We used multiple linear regression analysis to better understand the
relative importance of the main factors in our study. The factors we
used were grouping (1 or 0), set size (total number of marks), log of
mark size, and the number of colors (1 or 4). We chose to take the log
of mark size for our model because of the decreasing response time
trend seen in Figure 4.

The model accounted for 89% of the variance in the data from Ex-
periment 1. Grouping accounted for the most variance (75%), log
mark size accounted for an additional 7%, set size an additional 6%,
and the number of colors did not account for additional variance.
From this model we obtained a regression equation, where RT is re-
sponse time, g is grouping, / is the log mark size, and s is set size:
RT =62.31—-127.36g —83.171 + .30s.

3.2.4 Results in context

Haroz and Whitney showed that grouping counteracts large increases
in response time for increasing color and motion complexity; we cor-
roborated this and add that grouping negates large changes in perfor-
mance for mark size and set size variation. Our results show that ran-
dom grids are affected by mark size and set size manipulation whereas



single and grouped grids are not. We disagree with Haroz and Whit-
ney’s statement that the variety of visual features has a weak effect
on response time when people know what they are looking for. We
think it more appropriate to say that prior knowledge can reduce the
magnitude of the difference created by pop-out, rather than that prior
knowledge eliminates pop-out and thus eliminates the differences be-
tween random and grouped layouts.

3.3 Post-Experiment-1 Survey Results

We were also interested if participants’ perception of search difficulty
mirrored their response times. In particular we asked if, after complet-
ing the experiment, participants could intuit which grid configurations
were easier to use. To investigate this question, we gave participants a
post-test survey asking them to rate how difficult it was to search for
the target in each grid. We tested the orthogonal combination of all
color layouts, mark sizes, and set sizes (3 x 5 x 5 = 75 trials). Grids
were rated from 1 (very easy) to 7 (very difficult). Grids were pre-
sented in a random order and had randomized target location.

Results show that participants thought that grouped- and single-
colored grids were always easier than random-colored grids (group
vs. random: 7(14) = 54.93,p < .001; single vs. random: #(14) =
73.93, p < .001). The most difficult grids were those with small marks
or with large set sizes.

We evaluated how accurately participants could gauge visualiza-
tion difficulty by correlating each participant’s mean response time for
the 75 grid types with their ratings of perceived difficulty. The av-
erage correlation was .80 (range: .42-.92). We then tested whether
the mean correlation was different from zero by first calculating the
arc-hyperbolic tangent transformation on each participant’s correla-
tion coefficients to unconstrain their limits and then conducting a one-
sample -test. The participants’ correlations were significantly greater
than zero (¢(14) = 12.17, p < .001), indicating that visualization users
can provide accurate feedback on difficulty relating to scale even if
they are not necessarily visualization designers. We believe that this
means that asking novice visualization creators — even those without
design expertise — about usability issues relating to size can provide
accurate design suggestions. For instance, even if cancer genomicists
might have difficulty designing visualizations from scratch, if they are
familiar with using the visualizations their assessment of what is too
small to use will be accurate. Researchers, such as Levin [34], have
shown that people are often poor at self-assessment. It is possible that
this discrepancy could be due to the perception of visual clutter (e.g.,
Rosenholtz et al. [40]) or graph complexity (e.g., Carpenter and Shah
[7]). However more research is required to deduce any such relations.

4 EXPERIMENT 2: SEARCHING THROUGH SCATTERPLOTS

In Experiment 2 we studied how search for a target data point in scat-
ter plots is affected by variations in the same factors from Experiment
1: 1) visual mark size, 2) the number of visual marks (set size), and 3)
color grouping. We designed this experiment to investigate smaller
mark size and larger set size combinations we thought might have
greater performance differences based on our findings from Experi-
ment 1. While most of the set and mark size combinations in Ex-
periment 2 are distinct from those in Experiment 1, we included one
overlapping condition to serve as a reference point. To test a greater
number of set size and mark size combinations, we omitted the sin-
gle color condition tested in Experiment 1 because the results from
the single and grouped conditions were similar. We also changed the
grouped condition tested in Experiment 1 to a “semi-grouped” condi-
tion where there is partial overlap between groups to make the data
look more like natural scatterplots (rather than distinct clusters). The
colors in Experiment 2 are the same used in Experiment 1. Examples
of the scatterplots used are shown in Figure 5. Our hypotheses for
Experiment 2, based on the results of Experiment 1, include:

H1 Random conditions will yield slower response times compared to
semi-grouped conditions

H2 Response time will increase as set size increases

H3 Response time will decay as mark size shrinks

Although finding unique targets might be only a subset of analysis
tasks in scatterplot use (e.g., brushing and linking), using scatterplots
as stimuli has several advantages. The scatterplots we created have
high visual similarity to the grids used in Experiment 1. Ignoring the
data that fuels each type of visualization, if you eliminate row and
column alignment of a grid and then vary mark spacing, you get a
scatterplot. This similarity is beneficial as it gives us a glimpse into
how the spatial ordering of marks might affect performance.

4.1 Methods
411

There were 16 participants (mean age 25, range 20-31 years) recruited
from on-campus fliers and a university mailing list. All participants
had normal color vision as assessed using H.R.R. Pseudoisochromatic
Plates [17]. All gave informed consent and were compensated for
participation. The experimental protocol was approved by the Brown
University Institutional Review Board. One participant was excluded
from analysis because he/she took over two hours to complete the ex-
periment whereas other participants needed only 30-50 minutes.

Participants

4.1.2 Design

As in Experiment 1, we varied mark size and set size, but the values
were different:

Length: {.102° (4px), .152° (6px), .203° (8px), .254° (10px)}
Set Size: {14 x 14,22 x 22}

There were two color layouts, one in which the colors were semi-
grouped and one in which they were random. In the semi-grouped
condition, the distractors that were the same color were clustered to-
gether (see Plot Creation, Section 4.1.3, below and Figure 5) but were
not perfectly grouped and separate from one another as in the grouped
condition of Experiment 1 (see Figure 2). As in Experiment 1, there
were equal amounts of marks assigned to each color. The orthogonal
combination of these three factors created the 16 main conditions of
interest. Other factors included slope (positive, negative) and, as in
Experiment 1, target quadrant location. Those factors were included
to provide additional control but were treated as replications because
they were not of central interest.

The full design included 128 conditions (4 mark sizes X 2 set sizes
x 2 color layouts x 2 slopes x 4 target locations). We included a
4x replication of the full design so that each of the main conditions in
Experiment 2 had 32 trials — the same number as for the main condi-
tions in Experiment 1. With replications the experiment had 512 trials.
We chose a reduced number of trials after discovering that a 1000-trial
pilot study took prohibitively long. The 512 trial variant took partici-
pants up to an hour to complete.

4.1.3 Plot Creation

The plots described above were generated individually for each partic-
ipant using the same Python and D3/Node.js pipeline as in Experiment
1. All data were generated from sampling a multivariate normal dis-
tribution with four clusters. The data were then rotated to have a slope
of y = x or y = —x. After rotation we also imposed the constraint that
no data point may overlap or touch. This constraint ensured that each
square corresponded to a distinct perceived object and that set size re-
mained constant within a given condition. Any points violating the
constraint were removed and new marks were generated until the de-
sired condition for the grid was met. The target location within each
plot was randomized, and target placement was less restricted than in
Experiment 1 for greater ecological applicability. In Experiment 1 tar-
gets could only be placed in non-quadrant-edge locations, whereas in
Experiment 2 a target could be placed at any location. Color assign-
ment for grouped conditions was randomly decided for each group-
colored plot. Frame size was fixed for all plots at 20.612°.
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Fig. 4. Charts showing response times (RT) for each color layout in relation to set size (column 1), mark length (column 2), and total grid length

(column 3). The first row is random-, the second row is grouped-, and the last is single-colored grids. Bars show standard error.

4.1.4 Color Selection & Equipment
The same colors and equipment were used as in Experiment 1.

4.1.5 Procedure

The procedure was identical to that in Experiment 1 except short
breaks were given after every set of 10 displays. We reduced the num-
ber of trials between breaks from Experiment 1 to account for longer
task completion time.

4.2 Results and Discussion

Before analyzing results we applied the same data filtering procedure
as in Experiment 1. Accuracy was lower in Experiment 2 (mean: 86%,
range: 84%-87%), but still acceptable. The average number of outlier
trials across participants was 17 trials, with a range 10-26 trials. As in
Experiment 1, ample data remained after removing outliers and incor-
rect responses.

4.2.1 Interaction between set size and color layout

Figure 6A,C shows the effect of set size on response time for each
mark size separately for the random (A) and grouped (C) layouts. Like
in Experiment 1, we tested whether set size influenced performance by
first calculating the best-fit line for each subject and then using 7-tests
to compare the mean slope of the best fit lines with zero. Results
match those from Experiment 1: there was an effect for grouped color
layouts (¢(14) = 4.842,p < .001) and also for random color layouts
(r(14) =3.813, p = .002). We also found a difference between the two
color layouts (#(14) = 2.630, p = .020), where random color layouts
took longer. This supports H1.

We next compared random and grouped conditions to look at effects
of grouping and set size. As in Experiment 1 there was a robust effect
of color layout, where response times were significantly lower in the
grouped than in the random condition (F(1,14) = 19.803, p = .001).
There was a layout x set size interaction (F(1,14) = 6.917,p = .02),

in which the difference in response time as set size increased was
greater for the random condition than for the semi-grouped condition
(see Figure 6A,C). These findings support H2.

4.2.2 Effects of mark size and its interaction with set size

Figure 6B,D shows the effect of mark size on response time for each
set size separately for the random (B) and grouped (D) layouts. In
Figure 6, we see the same main patterns in Experiment 1. First, lines
within each color layout are roughly parallel. Second, the response
times for the smallest mark sizes were the longest in both color layout
conditions, and the effect of mark size plateaus as mark size increases.

To test our first observation we calculated the best-fit line for each
participant’s response times as a function of set size for each square
length in each color layout condition. We then conducted a one-
way repeated-measures ANOVA for the four slopes within each color-
layout condition. The slopes for different mark sizes did not differ
significantly within either layout condition (F(3,42) < 1,p > .05, for
both layouts). As in Experiment 1, this analysis suggests that the ef-
fects of mark size are independent of the effects of set size within each
color-layout condition.

To examine our second observation we tested for linear and
quadratic contrasts as a function of mark size for each color
layout condition. There were robust linear contrasts for both
layouts (grouped:F(1,14) = 22.224,p < .001; random:F(1,14) =
23.796,p < .001). There was also a quadratic contrast for the ran-
dom layout (F(1,14) = 7.423, p = .016), and a marginal effect for the
grouped layout (F(1,14) = 4.348, p = .056). These two observations
support H3.

4.2.3 Self-Reported Experiment 2 Feedback

Many participants said that it was harder to find the purple dot when:
(1) it was close to the axis, (2) it was surrounded by various different
colors (as opposed to within a cluster), and (3) it was not an outlier.



Fig. 5. Two example scatterplots that were presented in Experiment 2.
The left shows group-colored layout and the right shows the random-

colored layout.
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Fig. 6. Results from Experiment 2 showing response times (RT) for
random (top) and grouped layouts (bottom). Bars show standard error.

The comment that some found it easier to find a target when it was sur-
rounded by different colors was surprising given the results in Haroz
and Whitney [18]; however, the other feedback supports existing vi-
sual search knowledge proposed by Treisman [47].

4.2.4 Predicting search time: Experiment 2

We applied the equation generated from the regression model in Ex-
periment 1 (Section 3.2.3) to test whether it generalized to predict re-
sponse times in Experiment 2. We did not include the number of colors
as a factor because color was not varied in Experiment 2. The Exper-
iment 1 model fit the Experiment 2 data well, accounting for 86% of
the variance. Despite changing the type of visualization, the set sizes,
and mark sizes, both datasets reveal similar patters, in that both show
higher relative response times for random visualizations compared to
grouped visualizations. Although the exact equation generated from
Experiment 1 might not be applicable to more complex visualizations,
we believe that the relative ordering of the factors (grouping, mark
size, and set size) suggested by our analysis will generalize. In fu-
ture work, it would be beneficial to determine how our findings might
be incorporated into more robust predictive modeling, such as Rosen-
holtz et al.’s model that detects groups in visualizations [41]. Other
interesting directions related to a more robust measure of grouping are
to look at color surround of targets and to investigate how semantic
ramifications of groupings may influence target search in information
visualizaitons.

5 POTENTIAL APPLICATION AREAS

Although the present study involved the evaluation of simple visu-
alizations in a lab setting, we believe our results can be applied to
various tools currently used by analysts. One application area of our
results is in complex analysis environments such as those provided
in Bloomberg Professional. In Bloomberg Professional analysts often
perform tasks involving multiple displays, multiple types of charts and
data, and must make decisions with time sensitive data.We hypothe-
size that in complex analysis environments, fast search time can im-
prove the analysis process by reducing the time analysts spend weed-
ing through data in favor of time spent on using located information
to generate hypotheses. It is possible that other financial software
packages that do not rely on as complex monitor configurations (e.g.,
Palantir Metropolis) can still benefit equally as much from our find-
ings. Other application areas include, but are not limited to, network
security applications (e.g., Traffic Circle [1]), financial security moni-
toring (e.g., WireVis [8]), and intelligence analysis environments (e.g.,
Palantir Gotham).

Another relevant domain is cancer genomics analysis. To under-
stand the role of mark size in this domain we conducted a small case
study with two pairs of cancer genomic researchers. In our case study
we observed the researchers using an analysis tool that presented a
frequently used genomics visualization (a categorical heatmap called
a mutation matrix). We tested two cell sizes in the visualization (.102°
and .254°) and counterbalanced the order across the two pairs of re-
searchers. We used NASA’s TLX evaluation, which estimates task dif-
ficulty by asking participants to rate workload for a given task using
six different factors [21]. We also asked participants to rate the diffi-
culty of each condition using the same 7-point Likert difficulty rating
scale from Experiment 1, where 1 was “very easy”, 4 was “neutral,”
and 7 was “very difficult.”” Based on the results from Experiments 1
and 2, we hypothesized that participants would report that the condi-
tion with smaller marks was more difficult. Instead both pairs of re-
searchers said that each size (small vs. large) was useful for different
tasks. When searching for a single target (as in Experiments 1 and 2),
larger marks were better, but when looking for global trends, smaller
marks were better. As such, participants reported task switching de-
pending on the mark size. This left the TLX evaluations unsuitable
for use because TLX relies on comparing difficulty of the same task
across different conditions. The Likert scales were similarly inconclu-
sive. Although the evaluation was left inconclusive, we believe that the
association of task type with visualization size is an interesting finding
that has potential for assisting visualization design. Furthermore the
association between task and size may be a factor that should be con-
sidered when designing visualizations, however additional research is
required before further claims can be made.

6 DESIGN GUIDELINES
6.1

People are faster at search through visualizations in which similar
marks are grouped together (e.g., grouping by color similarity) com-
pared to visualizations with little grouping. In some types of visual-
izations it is impossible to group similar marks (e.g., one cannot de-
cide where data are placed in scatterplots). However, if the ordering
does not matter in the visualization, such as in cancer mutation matri-
ces, treemaps, and even bar graphs, it is beneficial to group marks by
similarity. Designers should, however, be careful when applying this
guideline that the ordering does not cause other detrimental effects.
For example, given a set of colors that encode data in a categorical
heatmap, the ordering of color may give the illusion of a continuous
gradient even though the data is categorical. It would be interesting to
study if the benefits of ordering outweigh such illusions.

Another effect of ordering can be seen in our comparison of Exper-
iments 1 and 2. The scatterplot stimuli we tested in Experiment 2 were
very similar to the grid stimuli from Experiment 1, with the main dif-
ference being spatial location: rather than being arrayed in a tight grid,
our scatter plots had squares with varying distances and alignments to
one another. Our preliminary comparisons between types of visualiza-

Group similar marks



tions suggest that spatial ordering of marks magnifies usability issues
related to the number and size of visual marks.

6.2 Avoid large mark quantities when data cannot be
grouped

When marks are strongly grouped (e.g., by color similarity), search
time is not affected by the quantity of data. However, as visualizations
become less ordered, the quantity of data marks becomes scalar for
search response time. Visualization summarization is often used to
compensate for the impossibility of showing all data in a visualization
at once. Such scenarios can occur when there is more data than pixels
or when node-link diagrams become “hairballs” from a large number
of nodes and high connectivity. Our results suggest that even if all data
can be shown at once, such data reduction methods can be beneficial
if the marks cannot be grouped. While summarizing data might not
make sense in every scenario — as summarizing the data could limit
tasks other than visual search that require a fuller representation of
data — this guideline nonetheless gives designers another tool.

6.3 Use large (enough) mark sizes

In tasks that involve finding a target, avoid using small mark sizes (i.e.,
< .508° visual angle) because of the slow performance. The range of
mark sizes most susceptible to slowing performance happen to be the
range of mark sizes used in typical scatterplots and marked line graphs.
The importance of choosing size is even greater when considering
Stone’s findings that perceived color can differ based on mark size
[42]. However, the usefulness of increasing mark size plateaus with
increasingly larger mark sizes (Figure 4). Performance was roughly
equivalent for marks whose visual angle ranged from .762° to 1.271°.

It is unclear what the effect of increasing mark size is beyond that
tested in Experiment 1. One possibility is that as sizes become larger
there is a point at which response time increases due to the need for
users to move their head to view different parts of the display. This
can become an issue for large format visualizations, such as those that
can be found in virtual reality.

We note that this design recommendation pertains to finding a sin-
gle target within a visualization. User reports from our case study sug-
gest that if the goal for the visualization is to discern a global pattern,
then smaller marks can be better.

7 LIMITATIONS

Although our study examines the relation between grouping, mark
size, and set size in depth, there are numerous other factors that are in-
volved in visual search performance for information visualization. For
instance, Stone has claimed that color can interact with size to affect
legibility [42], and it is unclear from the present results to what degree
size was a problem due to its affect on discriminability. One way to
test this potential interaction is to control for color discriminability at
different sizes and see if the response times are similar to those found
in Experiments 1 and 2. There is also the question of target saliency
in search. If the target in a grid were encoded with a bright white,
another salient color (e.g., pink [32]), or were blinking, then it is pos-
sible that current effects of set size, mark size, and grouping would be
diminished. Other potentially relevant factors include density [6] or
the amount of marks assigned to each color category.

Another concern is that we tested only a subset of sizes given our
monitor, and it is unclear how our results extend to larger visualiza-
tions (e.g., virtual reality). It could be that the observed performance
plateau extends into larger display configurations. If the curve is only
due to color discriminability then the plateau should remain. However,
it is possible that for sufficiently large sizes there could be another fac-
tor that causes a dip in performance (e.g., head movement in virtual
reality). The slight upturn in the data for large set sizes in random
displays (Figure 4B,C) hint to this phenomena. Related, although we
tested both fixed and varied spacing of marks (Experiment 1 and 2,
respectively) the effects of spacing warrants further investigation.

We also note that the guidelines here apply directly to target search
tasks, and further study is necessary to determine whether they gen-
eralize to other types of tasks (e.g., average comparison tasks [15]

and correlation and cluster detection [13]). For tasks that consider
global pattern understanding, it is possible that ideas from the ensem-
ble statistics literature may prove useful (e.g., Haberman and Whitney
[16]), as it is possible that ensemble parameters could influence global
pattern task type performance. Finally, how might our results transfer
to continuous, not categorical, data? We believe all of these points
provide interesting future lines of research.

8 CONCLUSION

We explored how the color layout, quantity, and size of marks in a
visualization can impact visual search time based on the results of
two experiments. Each experiment asked participants to search for
a unique target in colored visualization, where the first experiment
tested various colored grids and the second tested various scatterplots.
We found that search performance was faster when colors were spa-
tially grouped. We also found that the number of marks had little
effect on search time when colors were grouped, but had a robust ef-
fect when colors were laid out randomly. Finally, we found that the
smallest mark size was always slower and that increasing mark size
led to plateauing response times. We assessed the difficulty associ-
ated with mark size beyond our quantitative experiments through a
post-experiment survey, finding that participants were accurate in rat-
ing how difficult visualizations were. We also conducted a small case
study with cancer researchers and found that even small changes in
size can have notable effects on usability by changing what task as-
sociations users have with a visualization. These results led to sev-
eral design guidelines for improving visualization performance. We
believe that these results can help tool makers give their users more
intuitive visualizations through data-aware visualization stylization.
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