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ABSTRACT

Understanding the data structures in a program is crucial
to understanding how the program works, or why it doesn’t
work. Inspecting the code that implements the data struc-
tures, however, is an arduous task and often fails to yield
insights into the global organization of a program’s data.
Inspecting the actual contents of the heap solves these prob-
lems but presents a significant challenge of its own: finding
an effective way to present the enormous number of objects
it contains.
In this paper we present Heapviz, a tool for visualizing

and exploring snapshots of the heap obtained from a running
Java program. Unlike existing tools, such as traditional de-
buggers, Heapviz presents a global view of the program state
as a graph, together with powerful interactive capabilities for
navigating it. Our tool employs several key techniques that
help manage the scale of the data. First, we reduce the size
and complexity of the graph by using algorithms inspired by
static shape analysis to aggregate the nodes that make up
a data structure. Second, we introduce a dominator-based
layout scheme that emphasizes hierarchical containment and
ownership relations. Finally, the interactive interface allows
the user to expand and contract regions of the heap to mod-
ulate data structure detail, inspect individual objects and
field values, and search for objects based on type or con-
nectivity. By applying Heapviz to both constructed and
real-world examples, we show that Heapviz provides pro-
grammers with a powerful and intuitive tool for exploring
program behavior.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; E.1 [Data Structures]: Graphs and net-
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works, Lists, stacks, and queues, Trees; I.3.3 [Computer
Graphics]: Picture/Image Generation—Display algorithms

General Terms

Design
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1. INTRODUCTION

Show me your flowcharts and conceal your tables, and I

shall continue to be mystified. Show me your tables, and I

won’t usually need your flowcharts; they’ll be obvious.

– Fred Brooks [2]

Understanding modern software has become a significant
challenge, even for expert programmers. Part of the prob-
lem is that today’s programs are larger and more complex
than their predecessors, in terms of static code base (lines
of code), runtime behavior, and memory footprint. Another
problem is that modern applications, such as web-based e-
commerce and cloud computing platforms, are constructed
by assembling reusable software components, ranging from
simple container classes to huge middleware frameworks. In
many cases, these components are instantiated dynamically
and wired together using techniques such as reflection or
bytecode rewriting. These features make it very challenging
for any one programmer to obtain a global understanding of
the program’s state and behavior.

The size and complexity of software is also a major im-
pediment to program understanding tools, particularly those
based on static analysis of the code. The programming tech-
niques described above often result in very imprecise infor-
mation that is of little value to the programmer. Tools that
analyze the dynamic behavior of programs have traditionally
focused on identifying performance problems rather than on
general program understanding [20, 26, 18]. The primary
technique currently available for inspecting program state is
the debugger, which is extremely painful to use for anything
but the smallest data structures.



In this paper we present a new tool called Heapviz that
is capable of effectively visualizing heap snapshots obtained
from running Java programs. By visualizing the actual con-
tents of the heap, we avoid the drawbacks of static analysis
tools: the problems caused by dynamic software architec-
tures and the inaccuracy of heap approximation. The main
challenge of our approach is the scale of the data: even a
modest program can contain an enormous number of ob-
jects. We visualize the heap as a graph in which nodes repre-
sent objects and edges represent pointers (object references)
between them. Our work leverages the Prefuse visualiza-
tion toolkit [12], which provides a rich set of software tools
for building interactive visualizations. Unlike traditional de-
buggers, Heapviz provides a global view of the data together
with powerful interactive capabilities.
Our solution involves two techniques. First, we introduce

algorithms for aggregating and abstracting individual ob-
jects to create a more succinct summary of the heap. For
example, we might display all the elements of a large con-
tainer using a single representative element. Second, we use
Prefuse to provide interactive query and navigation: (a) ex-
pand or collapse regions of the heap, (b) inspect individual
objects and field values, (c) search for objects (or classes of
objects) based on type, and (d) explore the connectivity of
the object graph.
We demonstrate Heapviz on both constructed examples

and real-world Java benchmark programs to evaluate its ef-
fectiveness as a tool for helping programmers visualize and
navigate large, pointer-based data structures at a whole-
program scale. This ability could greatly increase program-
mer productivity in many aspects of software construction
and maintenance, including finding bugs and memory leaks,
identifying opportunities to improve data structures, under-
standing the overall system architecture and interaction be-
tween software components, and helping new members on a
development team come up to speed on the code quickly.

2. RELATEDWORK
Previous work on program analysis and understanding in-

cludes a number of techniques for visualizing the behavior
of programs. A large body of prior research has focused pri-
marily on helping programmers navigate and visualize the
code [4, 29, 6, 24]. As many computing researchers and prac-
titioners have observed, however, understanding the data

structures of a program is often more valuable. Techniques
for determining the structure of data in the heap fall into
two main categories: static analysis and dynamic analysis.
Static analysis algorithms, such as shape analysis [10, 25],
build a compile-time approximation of possible heap con-
figurations. In many cases, however, these abstractions are
too imprecise for detailed program understanding and de-
bugging tasks.
Our work is most closely related to dynamic analysis tools

that analyze the concrete heap (or a memory trace) in or-
der to present the programmer with a graph or other visual
representation of the actual state of the program. Since the
main challenge for these tools is managing the scale of the
data, the critical feature that distinguishes them is how they
aggregate information for the user. Different choices lead to
suitability for different tasks. Our specific goal for Heapviz
is to help programmers understand the overall organization
and structure of data.
Several existing tools provide programmers with an un-

abstracted graph representation of the concrete heap [32,
8, 31]. Without aggregation or interactive navigation, how-
ever, these visualizations do not scale well beyond a few
hundred or thousand objects. Pheng and Verbrugge [19]
present a tool with two visualizations of the heap. The first
is a detailed graph of individual objects and pointers, with
no abstraction. Nodes are displayed according to the shape
to which they belong (list, tree, or DAG – from Ghiya and
Hendren [10]). The second visualization consists of a line
graph of the overall heap contents over time broken down
by shape category. Their tool focuses on the evolution of the
heap over time; Heapviz, on the other hand, aims to make
a single snapshot of the heap comprehensible.

A number of existing heap visualization tools focus pri-
marily on identifying memory utilization problems, such as
memory bloat and memory leaks. The main difference be-
tween Heapviz and these tools is that they give up much of
the detail of the heap organization necessary to understand
how the data structures work.

De Pauw et al. [5] present a tool aimed at finding spurious
object references. The tool collapses the heap graph by ag-
gregating groups of objects with similar reference patterns.
It also supports interactive navigation, expanding and con-
tracting of aggregated nodes. While similar in spirit, this
tool is focused on finding spurious references and requires
some programmer intervention to identify which references
to record and display.

Several tools aggregate objects by ownership [21, 13, 17].
These tools first analyze the heap and build a model of ob-
ject ownership, then aggregate objects that have similar pat-
terns of ownership, type, or lifetime. The visualization typi-
cally presents the abstracted graph with annotations that
summarize the properties of the aggregated nodes. The
DYMEM memory visualization tool [23] shows the heap as
a strict tree, duplicating subtrees as necessary, and uses an
elaborate coloring scheme to indicate the amount of memory
used and owned by groups of objects. These tools are often
not well-suited for general program understanding, however,
since they abstract away internal organization and individ-
ual objects.

Demsky and Rinard [7] present a heap visualization based
on a dynamic analysis of object roles, or patterns of use in
the program. The tool generates a role transition diagram,
which focuses on object lifecycles, rather than the overall
organization of the data. While this tool presents a unique
view, scalability appears to be a concern for large programs.

Most closely related to Heapviz is the work of Marron et
al. [15]. They process the heap graph using an abstract func-
tion previously developed for use in a sophisticated static
pointer analysis. The analysis attempts to preserve infor-
mation about internal structure (such as sharing) whenever
nodes are collapsed.

3. SYSTEM OVERVIEW
In this section, we provide a brief overview of the archi-

tecture of Heapviz. We go into further detail in Sections 4
and 5. The full Heapviz pipeline (Figure 1) consists of three
major parts:

1. JVM + HPROF. Generates a heap snapshot from
a running Java program using the HPROF tool [18]
provided by Sun with the Java Development Kit.

2. Heap analyzer. Parses the heap snapshot, builds a
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Figure 1: The Heapviz pipeline. The JVM and HPROF generate a heap snapshot from a running Java
program. Our heap analyzer then parses this snapshot, builds a graph representation of the concrete heap,
summarizes the graph, and outputs a heap abstraction. Our heap visualizer reads the heap abstraction and
displays the graph, enabling the user to explore it interactively.

graph representation of the concrete heap, summarizes
the graph, and outputs the resulting heap abstraction.

3. Heap visualizer. Reads the heap abstraction and
displays the (possibly large) graph, allowing the user
to explore it interactively.

Our heap analyzer parses the heap snapshot and builds
a graph representation of the concrete heap. It then sum-
marizes the concrete heap using the algorithm described in
Section 4. In addition, it computes a dominator tree, which
the visualization tool uses for layout. We call the combi-
nation of the summarized graph and dominator tree a heap

abstraction. Finally, the heap analyzer outputs the heap
abstraction to GraphML [11], an XML-based graph format.
Our heap visualizer reads the heap abstraction from the

GraphML file and displays the summarized graph. As de-
scribed further in Section 5, it displays the graph using a
radial layout and uses the dominator tree to decide where in
the hierarchy to place each node. The heap visualizer allows
the user to explore the graph interactively, selecting nodes
to view the contents of their fields, expanding and collapsing
nodes, and displaying the connections among the objects in
the heap.

4. HEAP ANALYSIS

4.1 Heap Snapshot
Our heap analysis starts with a heap snapshot obtained

from a running Java program. The heap snapshot tells us
which objects are currently in the heap, what their field
values are, including the pointer values, and the values of
all root references (static variables and stack references).
In addition, the heap snapshot provides the runtime type
of each object instance and the number of bytes needed to
represent each object.
We use Sun’s HPROF tool [18] to generate heap snap-

shots. HPROF is an agent that connects to a host Java
virtual machine and uses the JVM Tool Interface [30] to
enumerate all the objects in the program’s heap. HPROF
outputs the snapshot in a well-documented binary format
that is supported by many third-party profiling and mem-
ory analysis tools. HPROF runs on top of any JVM that
supports the JVM Tool Interface, so it is independent of
JVM implementation.
One of our goals is to allow the programmer to view the

heap at any point in the program’s execution. To support
this capability we provide a mechanism for dumping a heap
snapshot from within the program itself. Since the source

to HPROF is provided with the Java Development Kit, we
modify it to include a class Dumper with a static method
dumpHeap() that generates the heap snapshot when called.
The programmer adds a call to dumpHeap() in the source
code at the point where a heap visualization is desired.

4.2 Heap Analyzer

4.2.1 Input Format

Our heap analyzer takes the heap snapshot from HPROF
and parses it into a sequence of records. Of interest are the
class records, which tell us details about the types of the
objects in the heap snapshot, the object instance records,
which give the types of these objects and their field val-
ues, and the root records, which tell us which heap objects
are pointed to by root pointers (stack references and static
references). Using these data, the heap analyzer builds a
graph representation of the program heap, mapping object
instances to graph vertices, pointer fields to graph edges,
and roots to entry points in the graph.

4.2.2 Summarization Algorithm

Typical Java programs may contain 100,000, 1,000,000, or
more live objects at any given point in program execution [1];
drawing all these objects would make the visualization too
cluttered to comprehend and too slow to interact with. Our
heap analyzer summarizes the graph to make visualization
manageable.

Our summarization algorithm is designed to reduce the
size of the graph while retaining the relationship among
nodes. Each node in the summary graph represents a set of
nodes in the concrete graph with the same runtime type and
similar connectivity, and the edges in the summary graph
represent sets of edges in the concrete graph. It works by
merging nodes in the concrete graph according to a set of
rules, and repeatedly applying those rules until it reaches a
fixed point.

The rules for merging are:

1. If there exists a reference from object o1 to ob-
ject o2, and o1 and o2 are of the same type,
merge o1 and o2. This rule merges the recursive
backbone of a data structure (e.g. the nodes of a linked
list or the nodes in a tree).

2. If objects o1 and o2 have the same set of prede-
cessor objects (objects that point to o1 or o2)
and are of the same type, merge o1 and o2. This
rule merges sets of objects that have the same type
and the same connectivity (e.g. the objects contained
by a data structure).
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Figure 2: An example of applying our summarization algorithm to a linked list. Our algorithm first summa-
rizes all LinkedList$Entry objects into a single node, then summarizes all T objects into a single node. Note
that the summary would look the same regardless of the number of T objects in the linked list.

With these two simple rules, our system can compress very
large graphs into more manageable ones. Consider the linked
list data structure of Figure 2. This linked list contains four
objects of type T. Our summarization algorithm first merges
all the LinkedList$Entry objects into a single object using
rule 1, and then all the T objects into a single object using
rule 2. Note that the summarized graph looks the same
no matter how many elements the linked list contains —
whether 4, 400, or 40,000. However, if the linked list contains
objects of different types, the summarized graph will contain
separate nodes for the set of objects of each type.

4.2.3 Dominators

In additional to the graph summary, our heap analyzer
also computes dominance information for all nodes in the
graph. In graph theory, a node d dominates a node n if every
path from the root to n must pass through d. Dominance is
widely used in compilers for control flow graphs, and prior
work has also applied dominance to heap snapshots [16]. In
this work, we use dominance only to decide the layout of
the graphs on the screen; the actual dominator tree is not
displayed by default. We use dominance to establish the
hierarchy of objects needed for a tree-based graph layout, as
proposed by Falke et al. [9] for software dependency graphs.
We discuss our graph layout scheme further in Section 5.
We use Cooper, Harvey, and Kennedy’s dominance algo-

rithm [3] to compute dominance. Its O(n2) asymptotic com-
plexity is worse than the near-linear algorithm of Lengauer
and Tarjan [14], but through well-engineered data structures
it performs better in practice.
Dominance analysis requires the graph to have a single

root, but the Java heap may have many roots (stack ref-
erences and static variables). Therefore, before computing
the dominator tree, we add to the graph a single “fake root”
node that points to the roots of the Java heap. This “fake
root” does not represent any real Java object, so we label it
as such in the visualization.

4.2.4 Output Format

We write the summarized graph and dominance informa-
tion in GraphML format [11] for the heap visualizer to im-
port and display.

5. HEAP VISUALIZATION
Given a heap graph from the analyzer described in the

previous section, Heapviz creates an interactive radial lay-
out. The input file consists of one set of nodes and two
sets of edges – a pointer set describing the connections that

actually exist in the heap, and a dominance set describ-
ing conceptual parent-child relations between nodes; this is
stored in GraphML format. The goals of the visualization
are twofold: (1) to create an intuitive display of summa-
rized heap data, and (2) to create an interactive environment
where heap data can be easily explored. Heapviz builds upon
the Prefuse toolkit [12]. Although our implementation fo-
cuses on facilitating program understanding and debugging,
our visualization environment may be extended for other
usage scenarios.

5.1 Layout
The heap abstraction includes dominance information for

all nodes in the graph; the immediate dominator relation-
ship defines a tree over the heap graph. This tree is at
the heart of the layout algorithm. From among many algo-
rithms tailored to display trees, we selected one that pro-
duces a radial graph because of its space-efficient expansion
of the tree in all directions. Efficient use of screen space
is of utmost importance, as even after summarization the
graph may contain several hundred nodes. Radial graphs
also avoid the restrictions presented by normal tree layouts.
Normal tree layouts have many expectations accompanying
them, such as the lack of back edges, something not guar-
anteed in the graphs Heapviz produces. To place emphasis
on levels of the graph, the user can determine the depth of
nodes by displaying concentric rings around the root node
of the layout.

5.2 Visual Encoding
Visual encoding within the radial graph focuses primarily

on edge and node differentiation to facilitate pattern recog-
nition and to accentuate filters the user may have enacted
upon the display. Edges appear in three colors: blue if they
are a pointer edge, red if they are a dominance edge, and
purple if they are both. Nodes also have three possibili-
ties for both their fill color – indicating they are selected,
not selected, or matching the current search query – and
their outline color – indicating whether they are expanded,
collapsed, or have no children in the dominance tree and
thus cannot be either (these six states that dictate node col-
oration are described in the following section). Additionally,
nodes display their object type on mouse hover.

5.3 Interaction
The visualization supports a variety of interaction styles,

listed below according to their familiarity, with the most
application-specific interactions last. The supplemental video



Figure 3: A Heapviz visualization of a HashSet containing 100 objects. The graph on the left is unsummarized,
and the one on the right is summarized. The supplemental video demonstrates the interactive capabilities of
our system using this visualization example.

demonstrates how the user can interact with Heapviz. Be-
cause our work relies on the user’s being able to explore the
graph interactively, we recommend that the reader view the
video to have a better understanding of how Heapviz works
and how it can be used.

5.3.1 Canvas Movement

The user is able to pan the view around the visualization,
zoom in and out by arbitrary distances, and zoom the dis-
play to fit the entire graph. Additionally, the graph can be
laid out relative to a node of the user’s choosing, recentering
the view on that node and bringing the entire graph back
towards the new center.

5.3.2 Selection and Dragging

Nodes may be added to or removed from the current se-
lection set either individually or by subtrees (as defined by
the dominance tree). Once nodes are selected they can be
dragged. By default, dragged nodes maintain their distance
from the root node of the layout; however, the user may
enable free movement of nodes.

5.3.3 Search

Heapviz provides the user with a search bar that per-
forms an incremental search (search-as-you-type) over the
names, member variable names, and member variable val-
ues of nodes. Nodes that fulfill the query are highlighted
as they are found, a feature that reveals patterns of where
particular objects or values may be found in the heap. Al-
ternatively, searching can help the user quickly identify a
particular node he or she would like to investigate.

5.3.4 Field View

Nodes in the graph have a variety of attributes that can
be displayed to the user: member variable names, member
variable values, number of instances (for summarized nodes)
and size in bytes. When the user selects a node, Heapviz
displays all node attributes that apply to the selected node.
This allows the user to inspect the instance values of any
Java object.

5.3.5 Expanding and Collapsing

The user can interactively collapse and expand nodes in
the Heapviz graph. Only nodes that have children in the
dominance tree can be expanded or collapsed. A node that
dominates an entire subtree can be said to represent that
subtree; the ability to expand (show) or collapse (hide) that
subtree behind the dominating node offers the user a way
both to reduce unwanted visual clutter and to conceptually
simplify the graph.

5.3.6 Edge Visibility Toggles

The user is able to individually enable or disable the dis-
play of the two edge sets via a set of toggles. Dominance
edges can provide revealing information about conceptual
connections between data structures when the user is un-
familiar with the program; pointer edges show the actual
structure of the object graph, and thus are useful for both
program understanding and debugging.

6. CASE STUDIES
We now present the results of visualizing data structures

in several Java programs and use these as a basis for discus-
sion of Heapviz’s strengths and weaknesses. First, we show
two constructed examples (micro-benchmarks) built using
standard container classes. Second, we explore two real-
world benchmarks, 209 db [27] and SPEC JBB 2000 [28].

6.1 Constructed Examples
We first consider two examples constructed from standard

data structures from the Java class library. In both cases,
Heapviz can help users understand how a data structure is
implemented without looking at the source code.

6.1.1 HashSet

Consider a set data structure: a collection that contains
no duplicate elements and no ordering. One can implement
a set using a hash table, which maps keys to values. The
keys of the hash table are the elements of the set; the values
are irrelevant but must be present. The Java class library
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Figure 4: A Heapviz visualization of three data structures: a TreeMap, a HashSet, and a LinkedList. Each data
structure contains a subset of IntBox objects. The unsummarized graph is on the left, and the summarized
graph is on the right. Heapviz reveals the sharing among different data structures without requiring the user
to look at the program source code.

includes a HashSet data structure that implements a set in
this way.
Figure 3 shows a Heapviz visualization of a Java HashSet

containing one hundred elements. The unsummarized graph
shows the overall structure of the HashSet but is too clut-
tered to show the specifics of particular nodes. The summa-
rized graph is much more manageable, with only ten nodes.
In this, we see that the HashSet points to a HashMap (a Java
hash table). All IntBox elements (our own implementation
of boxed integers) are collapsed into a single node pointed
to by a HashSet$Entry node. The user may see how many
concrete nodes are summarized in one summary node by
clicking on the node in the visualization. In this view, we
notice that all HashSet$Entry nodes point to a single con-
crete Object node. This Object is the sentinel value in the
hash table to ensure that a particular key is in the hash ta-
ble and set. The implementor has chosen to save space and
time by using the same Object as the value for all keys, and
in fact we were unaware of this implementation detail until
we viewed this Heapviz graph.

6.1.2 Overlapping Elements

Consider a program that contains multiple data struc-
tures. These data structures each contain some subset of the
data objects in the program, and these subsets may overlap.
That is, of the objects in data structure x, some are pointed
to only by x, some by x and y, and some by x and z. Heapviz
can explain this situation.
Figures 4 and 5 show such a program. This program

has three data structures, a TreeMap, a HashSet, and a

LinkedList, using the standard implementations in the Java
class library. These data structures contain IntBox objects,
some of which are shared by two or all three data structures.
The unsummarized graph on the left in Figure 4 gives too
much detail to discover this sharing, but the summarized
graph makes the sharing clear. Each IntBox node in the
summarized graph represents a set of concrete nodes with
the same set of concrete predecessor nodes. Thus the sum-
marized graph explains the sharing of IntBox nodes among
the different data structures. For example, we can see that
the IntBox objects represented by node a are pointed to only
by the HashMap, but the ones represented by nodes c and
d are pointed to by both the HashMap and the LinkedList.
Thus we can determine that all IntBox objects in the LinkedList
are also in the HashMap, but not all of the ones in the HashMap
are in the LinkedList. In the interactive visualization, the
user can click on nodes to see exactly how many IntBox

nodes are shared among the data structures, and how many
are only in the HashMap.

From the nodes and edges in Figure 4, without looking at
the source code of the program, we can determine that:

1. There are three data structures in the program: a
TreeMap, a HashSet, and a LinkedList.

2. Each data structure contains objects of type IntBox.

3. Some IntBox objects (the ones represented by node a)
are pointed to by only the HashMap. The user could
find the exact number by clicking on node a.

4. Some IntBox objects are shared by all three data struc-
tures (node c), and others are shared by only two
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Figure 5: The same heap as in Figure 4, but showing
only the dominance edges Heapviz uses for graph
layout. The dominance tree clearly separates the
three data structures – a HashSet (D), a TreeMap (C),
and a LinkedList (B). Some objects (A) are shared
among multiple data structures and thus are domi-
nated only by the root.

(nodes b and d). Again, the exact number can be found
by clicking on the appropriate summary node.

5. The HashMap contains all IntBox objects in the pro-
gram. The other data structures each contain a strict
subset of the IntBox objects.

Heapviz makes clear the sharing among different data struc-
tures without requiring the user to look at the program
source code.

6.2 Real Examples
Now we assess Heapviz’s visualization of two real-world

benchmarks, 209 db [27] and SPEC JBB 2000 [28]. We
consider how Heapviz is successful in helping us understand
the data structures in 209 db and why it is less successful
in summarizing the graph from SPEC JBB 2000.

6.2.1 _209_db

209 db is a database benchmark from the SPEC JVM 98
benchmark suite [27]. It performs multiple database opera-
tions on an in-memory database. We took a heap snapshot
of an execution of 209 db just after the database is built
from an input file and before any operations are performed

on the database. Figure 6 shows the summarized visualiza-
tion on the bottom left, with the inset zoomed to show the
program’s primary data structure.

Before summarization, the graph contained 294,002 ob-
jects; after summarization, it contained 254. By zooming in
on the nodes in the graph that summarize the most concrete
nodes, we can see the primary data structure in the program:
an object of type spec.benchmarks._209_db.Database. This
database contains two Vector objects (Vectors are growable
arrays of objects), which each contain strings or database en-
tries. The node that represents all database entries in this
database summarizes 15,332 nodes. The database entries
then each contain a Vector of strings; the total number of
these strings in the database is 122,656.

By inspecting the source code of 209 db, we can ex-
plain what these data mean. One of the two Vector objects
pointed to by the database is used to store a format string
that describes the records included in each entry. The other
Vector holds the database entries. Each database entry uses
a Vector to hold strings for each record: name, address,
city, state, and so on. Though we had to look at the source
code to understand this program, the visualization quickly
showed us the primary data structure in the program and
its high-level structure.

However, this example shows some of the limitations of
Heapviz. Even though Heapviz was able to reduce the size
of the graph by three orders of magnitude, the graph is still
somewhat large and difficult to understand at a glance. In
particular, it is difficult to pick out the important nodes in
the graph, since nodes that summarize one concrete node
are displayed the same way as nodes that summarize many
concrete nodes. We discuss possible solutions to these issues
in Section 7.

6.2.2 SPEC JBB 2000

The SPEC JBB 2000 [28] benchmark emulates a three-
tier client-server system, with the database replaced by an
in-memory tree and clients replaced by driver threads. The
system models a wholesale company, with warehouses serv-
ing different districts and customers placing orders. We took
a heap snapshot of SPEC JBB 2000 during the destroy()

method of the District class in order to understand the
sharing of Order objects stored by the District.

A full visualization of the SPEC JBB 2000 heap snapshot
is shown in Figure 7. From the 117,819 objects in the con-
crete heap at this point in program execution, we produce
a summarized graph of 7578 nodes, a reduction of 93.5%.
Although some large data structures are visible after appli-
cation of the summarization algorithm, the graph is still too
visually complex.

The characteristics of this data provide some clues as to
limitations of the summarization algorithm. SPEC JBB
2000 represents an extreme form of the simple program dis-
cussed in Section 6.1.2, with a dense web of connections
among what we could consider the“leaves”of the data struc-
tures – objects that represent the individual elements of the
program, such as customers and orders. In SPEC JBB,
many of these “leaves” point to other “leaves” and have a
one-to-one relationship. This one-to-one pointer mapping
gives each of these “leaves” a unique predecessor set, pre-
venting them from being summarized.

For example, consider the Order objects in SPEC JBB. An
Order object points to the Customer who made that Order,
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Figure 6: A summarized visualization of the 209 db benchmark. The bottom left shows the full graph, with
the inset zoomed to show the program’s primary data structure, a database. This database contains two
Vector objects, each containing strings or database entries. The node representing all entries in this database
summarizes 15,332 nodes. Each database entry contain a Vector of strings; the total number of these strings
in the database is 122,656.

and a Customer object points to the last Order the Customer
made. Thus, all Customer objects point to different Order

objects, which then point back to the Customer object. This
situation is shown in Figure 8.
Because Customer objects point to different Order objects,

any Order pointed to by a Customer has a unique predecessor
set and will not be merged with any other Order, unless
the Customer objects are merged first. But because these
Order objects point back to different Customer objects, those
Customer objects also have unique predecessor sets and will
not be merged. As a result, our algorithm cannot merge
nodes that exhibit this one-to-one structure. We see this
exact behavior in our graph: None of the three hundred
Order objects are summarized because each of them points
to and is pointed to by a different Customer object. We
discuss possible solutions to this problem in Section 7.

7. FUTUREWORK
We have demonstrated Heapviz’s performance on large

programs; however, our summarization algorithm cannot
greatly compress the size of graphs for programs containing
a large number of nodes that have unique predecessor sets.

With highly-connected graphs, such as the SPEC JBB 2000
benchmark (Figure 7), it is difficult to see the results of a
query, even with highlighting of the relevant nodes. Our cur-
rent summarization algorithm applies the same set of rules
for merging nodes to all heap graphs, regardless of complex-
ity. We plan to experiment with adjustable levels of detail,
in which the summarization algorithm applies increasingly-
powerful abstraction rules to a graph until it reaches a cer-
tain threshold of complexity, measured in number of nodes
and edges. For example, Heapviz currently preserves sharing
information among nodes, but for complex graphs like SPEC
JBB 2000 it could discard sharing information to produce a
more manageable visualization.

On a similar note, our visualization currently allows users
to collapse and expand nodes based on the dominator tree.
Another possibility would be to expand and collapse the con-
crete nodes that a particular summary node represents. This
approach would require care to ensure that the graph does
not become too complex when a summary node is expanded.

Heapviz currently supports searching for nodes by type,
but a full-fledged query language would allow users to search
for objects that meet specific criteria. We envision a query
language based on first-order logic, similar to the heap as-



Figure 7: A summarized visualization of the SPEC
JBB 2000 benchmark, which contains 117,819 ob-
jects in the concrete heap at this point in program
execution. The summarized graph contains 7578
nodes. Although some large data structures are vis-
ible after this significant reduction, the graph is still
cluttered.

sertion language proposed by Reichenbach et al. [22]. Such a
language would allow queries such as “Which objects of type
String have length ≥ 5?”and“Which objects are reachable
from object a?” Similarly, we could support a path query
language to highlight paths through the heap that match
certain criteria.
Finally, because our long-term goal with Heapviz is to

produce a tool that will be useful to developers, we plan
to release Heapviz to the developer community. In addition,
we plan to conduct formal user studies to determine whether
outside users find Heapviz useful for program understanding
and debugging tasks.

8. CONCLUSIONS
We have presented a tool for helping programmers ana-

lyze, visualize, and navigate heap snapshots from running
Java programs. Heapviz enables users to navigate large,
pointer-based data structures at a whole-program scale. We
have introduced a heap analyzer, which parses a heap snap-
shot, builds a graph representation, and applies algorithms
to create a summarized heap abstraction. We have demon-
strated how to navigate this abstraction with a heap vi-
sualizer which supports several interaction styles, including
detailed field view, expanding and collapsing of nodes, edge
visibility toggles, and search.
Heapviz builds on a body of prior work on tools for de-

bugging, static analysis, and data structure visualization.
Our system makes several key contributions. Unlike tradi-

Customer

Order

Customer

Order

Customer

Order

Customer

Order

Figure 8: An example of the one-to-one mapping
between “leaf” elements that we observed in SPEC
JBB 2000. No matter what other objects point to
these objects, they will not be summarized because
the one-to-one structure guarantees that each has a
unique predecessor set.

tional debuggers, we provide both an overview and detail;
Heapviz provides the global view of the actual heap con-
tents, as well as the ability to examine detail on demand
with the field view. This variable level of detail supports
programmer productivity in many common usage scenar-
ios, including finding bugs and memory leaks, identifying
data structures that could be improved, and understanding
the overall system architecture. We hope that further ex-
ploration of domain-specific usage scenarios will spark the
development of new analysis and visualization techniques.
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